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Abstract 

 
In each of the four rf stations that make up the rf buncher in the SNS ring, cavity voltage and 
phase are controlled through a negative-feedback system employing digital electronics.  Kevin 
Smith at Brookhaven National Laboratory is leading the effort to construct this digital system.  
With average beam currents of 35 Amperes near the end of each machine cycle, the rf cavities in 
the SNS ring are strongly driven by the beam.  To provide adequate regulation of cavity fields in 
the presence of high SNS beam currents, basic feedback loop parameters are pushed to levels 
where stability becomes a major concern.  This note presents a LabVIEW simulation of the ring 
rf system that demonstrates how Smith compensation can be used to mitigate the serious 
destabilizing effect of dead-time delay in the feedback loop and assure adequate regulation of 
cavity fields.  A digital implementation of Smith compensation is outlined that could be 
incorporated into the LLRF system being provided by BNL 
 
 
Introduction 
 

In any feedback system, unstable conditions exist whenever signal-delays in the 
feedback loop become long enough to produce positive-feedback for loop gains 
exceeding unity.  Mechanisms for compensating delays are essential to the attainment of 
an optimized feedback system having adequate stability margins.   

There are two general types of delay in any feedback system.  The first type of 
delay is commonly referred to as dead time.  Dead time is produced by timing delays and 
signal propagation delays.  A major source of propagation delay in the SNS system arises 
from the round-trip signal-transit-time between signal sources in the Ring Service 
Building and receiver amplifiers in the ring tunnel.  This relatively long signal path 
produces approximately 750 ns of round-trip propagation delay and represents a major 
source of instability in the SNS feedback system.   

The second type of delay results from bandwidth time constants associated with 
energy storage in various components of the feedback system.  This type of delay is 
associated with poles in the system response.  While the delay mechanisms differ, the two 
types of delay are indistinguishable in the processed signal.  However, the delay types 
differ markedly in their responses to various compensation methods.  
 Anticipating the effect of delay by adding a predictive signal into the feedback 
path can mitigate degradation in stability caused by dead-time delays.  This compensation 
technique forms the basis for the Smith compensator (Ref. 1) that will be described in this 
report.  Other compensation devices, such as the lead-lag network used in PID 
controllers, are effective in compensating delays resulting from energy-storage elements, 
but they must be de-tuned to compensate dead-time delays, compromising their 
performance.  The simulations presented in this report show that a properly implemented 
Smith compensator makes a substantial improvement in stability for parameters of the 
SNS.   

Successful implementation of the Smith compensator depends upon creation of a 
reasonably close analogue of the controlled element, which in this case includes the 
cavity and dead-time delays.  The simulation results will demonstrate not only that the 
Smith compensator greatly improves stability of the ring rf system, but it does so without 



 

 

excessive care in construction of the process analogue.  More specifically, for parameters 
relevant to SNS, stability is maintained for errors as large as about 5% in each parameter 
of the analogue.  If only a single analogue parameter is in error, much larger tolerance is 
sometimes found for the parameter that is in error.   

Additional compensation methods, such as PID control, may be added to the 
Smith-compensated beam control system described in this report to further improve 
stabilization and field regulation, primarily by compensating the effects of energy storage 
elements in the feedback loop.  PID compensation methods are more widely known than 
Smith compensation methods, and more frequently utilized in systems in which dead 
time is not a problem.  The addition of PID control to the Smith-compensated system 
may be explored in a separate set of simulations.  

 
 

Simulation Model 
 
Overall Block Diagram 
 

Figure 1 is a block diagram of the feedback control system that has been 
simulated in the present study.  The diagram contains the basic elements of the Smith 
compensator.  In principle, the compensator forms a signal path in parallel with the actual 
cavity and delay lines of the SNS ring-rf system.  The parallel path contains the cavity 
analogue and a delay-line analogue that together produce a signal response as close as 
possible to that of the actual cavity and the actual system delays.   

At the differencing ports to the right of the middle I&Q demodulator in figure 1, 
the delayed signal from the cavity analogue is subtracted from the delayed signal from 
the actual cavity.  For a precisely constructed analogue, the resulting difference signal 
equals the beam-induced signal, or the beam “disturbance,” which drives the actual cavity 
but not its analogue.  If the analogue construction is imprecise, the difference signal is 
only an estimate of the beam disturbance. 

At the I&Q summing junctions in figure 1, the cavity-analogue output is added to 
the estimated beam disturbance from the previous differencing ports, producing a 
predicted cavity signal plus the estimated beam disturbance.  This composite signal is 
then compared to the reference I&Q input to form a short, fast feedback loop that does 
not contain the delay, yet regulates the system based upon an estimated beam 
disturbance.  In effect, the delay has been moved outside of the feedback loop.   

The estimated beam disturbance becomes exact when the cavity and delay 
analogues are exact.  In this limit, the Smith compensator completely eliminates the 
effect of the delays.  In practice, imprecision in the cavity and delay analogues will exist, 
leading to imperfect cancellation of the delays and imperfect predictions of the cavity 
signal and beam disturbance.  Calculating the sensitivity of the Smith compensator to 
errors in the cavity and delay analogues then becomes a central issue in determining the 
practicality of the Smith compensator. 

In the simulations described in this report, the circuit equations for the cavity and 
its analogue are solved exactly for arbitrary input current. This approach allows the study 
of high-frequency phenomenon, non-linearities and coupling to harmonics present in the 
current sources that drive the cavity.  The effects of non-linearities and harmonic 



 

 

coupling are expected to be small in most circumstances, although effects have been 
noted under some conditions at high levels of beam current.  Exact solutions of the circuit 
equations for the analogue imply the analogue is composed of high-frequency elements 
operating in the range of the carrier frequency for the system and its harmonics.. 

While high-frequency cavity analogue elements provide a good solution both in 
simulation and in practice, it is also possible and advantageous in a digital system to 
reduce the cavity analogue to a baseband equivalent.  A baseband-equivalent model treats 
only the envelope functions of the system, leading to a considerable reduction in 
bandwidth requirements and a major simplification in the solution to the problem.  

In the case of a pure sinusoidal carrier, a procedure for reducing a resonant circuit, 
such as the cavity analogue, to a baseband equivalent is outlined in Ref. 2.  In a digital 
system, the baseband cavity and delay analogues would be conveniently included in the 
feedback path by means of algorithms programmed into digital signal processors, rather 
than by means of physical elements.  Since BNL is providing a very flexible digital 
LLRF system containing the necessary digital processors, application of a Smith 
compensator using baseband compensation elements appears feasible and practical.  A 
more detailed description of this baseband approach may be provided in a separate 
Technical Note, along with a more detailed examination of the practical considerations 
involved in applying the Smith compensation method in the BNL LLRF system. 
 
 
I&Q Demodulators 
 

Figure 2 is a schematic diagram of the I&Q demodulators used in the simulation 
and shown in block form in figure 1.  The demodulators convert rf signals from the 
delayed cavity, the delayed cavity analogue and the undelayed cavity analogue into 
digitized envelope signals representing the in-phase, I, and quadrature, Q, components of 
the rf signals.   

There are numerous ways to accomplish the conversion from rf carrier signals to 
digital I&Q representations.  In the present simulations, the rf signals are sampled at a 
rate of four times the applied frequency.  Samples are de-multiplexed into even and odd 
samples and retained between consecutive samples (sample and hold feature).  Odd 
samples are multiplied by cos(2πft) and even samples are multiplied by sin(2πft) to 
produce the desired I and Q values.   

Because the sampling rate is four times the applied frequency, f, the sine and 
cosine multiplications are accomplished in the digital domain by simply changing the 
sign of alternate samples.  Discrete sampling frequencies less than four times the applied 
frequency can be found that may also utilize a simplified multiplication scheme similar to 
that illustrated in figure 2.  The only requirement is that consecutive samples must be 
taken at odd multiples of one-fourth of the period of the carrier frequency (e.g. sampling 
rates of (4)f, (4/3)f, (4/5)f, …).  Within this constraint, the sampling frequency may be 
reduced until a lower limit is reached where the Nyquist criterion is violated for the 
required system bandwidth. 
 
 



 

 

 
Circuit Equations 
 

In the simulations, the buncher cavity is treated as a parallel RLC circuit.  To 
accurately model the effects of dynamic tuning, the inductor in the RLC circuit is 
modeled as a ferrite-loaded coaxial transmission line having a time-varying permeability, 
µ.   The presence of a time-varying inductive element transforms the circuit equations 
from linear-time invariant forms to non-linear forms.  In a strict sense, non-linear 
equations cannot be solved using standard Laplace transform techniques.  Because of this 
complication, numerical techniques will be used in the time domain to solve the circuit 
equations in the simulations presented in this report.   

The gap voltage in a buncher cavity having a time-varying inductor is then 
governed by the following equations: 

dii
dt
dG

dt
dC

dt
diG

dt
dC

dt
idC =








+++






 ++ 12 2

2

2

2 µλµλλµµλλµ (1)







 +=

dt
di

dt
diVg

µµλ , (2)

π
λ

2

ln 





⋅

= a
bl

    (3) 

 
where C is the capacitance across the buncher gap, i is the current in the inductive 
element of the buncher cavity, G is the shunt conductance across the gap, l is the length 
of the coaxial line representing the inductive element, b is its outside diameter, and a is 
its inside diameter.  The quantity, id, is the drive current consisting of a linear 
superposition of currents from the rf power amplifier and the SNS beam.  

Although the inductor in equations 1-3 can vary arbitrarily with time, the 
present simulations will treat the case of a linear time variation only.  Accordingly, the 
magnetic permeability will be specialized to, 
 

    ( )ktb −= 1µµ , 
 
where µb is the initial permeability, and k is a constant determined by the slew rate for 
dynamic tuning.  With this specialization, the circuit equations reduce to: 
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Power Amplifier 
 

The power amplifier is treated as a non-linear element in which the output current 
depends upon both the grid excitation and the anode voltage of the tetrode contained 
within the amplifier.  Having a strong non-linear dependence in certain parameter ranges, 
the amplifier output current can sometimes have a rich harmonic content.  The present 
analysis simulates amplifier non-linearities and the excitation of harmonics with a 
reasonable degree of realism, allowing the exploration of secondary effects produced by 
these non-linearities.  

Estimates of the amplifier transfer function are derived from power-amplifier 
tetrode characteristics supplied by the tetrode manufacturer.  A transfer function similar 
to that shown in figure 2 of Ref. 3 is used in the present simulations.  For a given screen-
grid bias-voltage, the output current of the power amplifier is taken to be a function of the 
parameter Va + µVg, where Va is the anode voltage of the tetrode used in the power 
amplifier, Vg is the grid voltage applied to the tetrode, and µ is a constant that depends 
upon screen-grid bias voltage.  The specific results described in this report were obtained 
for a screen-grid bias voltage of 1500 volts. 
 
 
Simulated SNS Beam 
 

In the simulations, the SNS beam is treated as a rigid body of charge, having the 
beam current profile calculated by M. Blaskewitz in figure 4 of Ref. 3.  This is a common 
starting point for the type of analysis described in this report.  A desirable improvement 
to the present simulations would include a fluid beam that would respond to the cavity 
fields in a more self-consistent manner.  Such a model would enable the study of 
Robinson-type instabilities (Ref. 4).  A more self-consistent model may be constructed in 
future work. 

The beam excitation of the cavity resonator is modeled in the present simulation 
as a current applied in parallel with the drive current.  While most of the excitation 
energy is within the first harmonic of the ring’s revolution frequency, beam profile 
effects place a small amount of excitation energy in higher harmonics of the revolution 
frequency.  The present simulation allows the exploration of low-order effects due to 
coupling to these higher harmonics. 
 
 



 

 

 
 
LabVIEW Implementation 
 
The simulation model described in the previous sections was implemented within the 
framework of a LabVIEW software environment.  While LabVIEW is most commonly 
known for applications in instrument control and data acquisition, LabVIEW also 
includes a powerful set of software tools for simulation.  The present exercise utilizes one 
of the add-on tools for LabVIEW known as the LabVIEW System Simulation and Design 
Toolset for Windows.   

LabVIEW is particularly well suited to electronics simulations involving standard 
digital and analog components, since these components are supplied within LabVIEW as 
ready-made VIs (Virtual Instruments).  Once constructed, the LabVIEW program 
provides a convenient means of examining any point in the rf circuit under a wide range 
of conditions using a number of graphics formats.   
 For the simulations presented in this report, the entire LabVIEW program is 
contained within a single FOR loop.  Figure 3 is a LabVIEW diagram showing the 
contents of this FOR loop.  Prior to entering the FOR loop, various constants are 
initialized, including I&Q reference values, beam phase, and power-ramp-up time.  A 
two-layer sequence structure is enclosed within the FOR loop.  The top layer of the 
sequence structure contains two pairs of formula nodes that contain terms displayed in 
equations 2-5.  Following a special LabVIEW procedure, local feedback loops containing 
integral operators form integration routines for solving equations 2, 4 and 5 on a point-
by-point basis.  

The Runga-Kuta method is used to perform integrations within the program.  One 
integration loop is associated with calculation of the fields in the SNS cavity, while the 
other integration loop is associated with calculation of the fields within the cavity 
analogue of the Smith compensator.  Time steps in the equation solver are set to 1/500 of 
the rf period for the simulations presented here.  This time step has been found to yield 
convergent results.    

Current drive for the cavities is contained within a pair of subVIs that are also 
contained within the top layer of the sequence structure.  One of the subVIs models the 
beam while the other subVI models the power amplifier.  In addition to applying grid 
drive directly to the power amplifier subVI, anode voltage is fed back to the amplifier 
subVI from the output of the cavity voltage solver through a shift register at the boundary 
of the main FOR loop in the program.  By this means, transient behavior in the amplifier 
drive current is accurately calculated.    

The second layer of the sequence structure contains elements of the I&Q 
demodulators shown in figure 1.  In this layer, logic elements are utilized for sampling 
the cavity voltage at selected intervals and separating the in-phase component of the 
cavity voltage from the quadrature component.  Once the samples have been selected, the 
values are retained in sample-and-hold circuits formed from subVIs included in the 
LabVIEW simulation toolset. 

 
        



 

 

 
Simulation Results 
 
Open Loop Response 
 

Figure 5 is a plot of the open-loop gap voltage produced by the beam current 
alone, without grid drive in the tetrode of the power amplifier.  The tetrode remains in the 
circuit, however, and the anode of the tube adds to the shunt impedance of the cavity.  
Since the output impedance of the tube is much lower than the unloaded cavity 
impedance, the tube impedance characteristics dictate the ultimate gap voltage more than 
the cavity impedance for a given beam current. 
 In figure 5, one complete SNS cycle of 1.1 ms duration is shown.  The red curve 
is the raw rf signal in the cavity gap, the blue curve is the in-phase component of the 
envelope and the green curve is the quadrature component of the envelope.  Dynamic 
tuning has been adjusted so that approximately 7.5 kV is produced in the gap at the end 
of the pulse.  A gap voltage of 7.5 kV is approximately the desired gap voltage for SNS.   

Peak beam current increases linearly in the simulations from zero to 75 Amperes, 
as calculated in Ref. 3.  Since there are two gaps per station, total peak beam current in 
the simulations is 150 Amperes.  Taking into account the effect of the beam profile, the 
first harmonic component of current will be less than the peak beam current.  This first 
harmonic component determines the value of the dynamic tuning parameter, k. 

The dynamic tuning causes the gap voltage to fall off slowly, after an initial rapid 
rise.  This slow fall-off is due to the drop in gap impedance as the system is detuned.   
Without dynamic tuning, the gap voltage rises to about 60-70 kV at the end of the cycle, 
implying an effective shunt impedance of less than 1,000 Ohms per gap, determined 
largely by the output impedance of the power amplifier.  Near the end of the cycle, the 
gap voltage is out of phase with the beam by nearly 90 degrees.  This phase difference is 
apparent from the I and Q displays in figure 5.  In effect, the beam has excited a gap 
voltage that tends to sustain beam bunching, with no assistance from the power amplifier. 

Figure 6a shows a similar plot with the same input parameters, but with enough 
drive current to produce 7.5 kV in the cavity gap in the absence of the beam (unloaded 
gap voltage).  Figure 6b is a plot of the net anode current which is a superposition of 
current supplied to the cavity by the anode and current supplied to the tetrode from the 
beam excitation.  With perfect dynamic tuning and ideal linear circuit elements, gap 
voltage and anode current should return to their unloaded values (Ref. 5).  The dynamic 
tuning parameter, k, has been adjusted in figure 6 to yield this condition approximately 
near the end of the 1.1 ms pulse.  This unloaded condition is well satisfied only near the 
end of the pulse in this particular case because the assumed linear dynamic tuning does 
not allow the unloaded condition to be met over the entire pulse for a linearly increasing 
beam-current.   

It is apparent from figures 5 and 6 that the beam produces most of the field in the 
gap when dynamic tuning is utilized.  Consequently, the gap voltage will be highly 
sensitive to the beam structure in a dynamically tuned system.  It should be noted, as 
well, that the reduction in impedance associated with de-tuning reduces the effective 
open-loop gain of the system near the end of the pulse.  Basic feedback regulation 
therefore becomes weakest near the end of the cycle as a consequence of dynamic tuning.  



 

 

Fortunately, the effectiveness of dynamic tuning for a well-bunched beam compensates 
for the reduced regulation provided by the control-system near the end of the cycle. 

 
 
Closed-Loop Response 
 

Figure 7 shows the response when largely uncompensated feedback is applied to 
the system.  Simulation parameters are identical to those of figures 5 and 6, except that 
the drive signal is ramped upward from zero to its set point during the first 100 
microseconds of the pulse.  In addition, a single-pole filter element has been added to the 
feedback path to help control stability of the system to some extent.  Open loop gains for 
the system have been raised to levels that are close to the boundary of instability.   

In figure 7, system dead-time delays are adjusted to zero to set the stage for 
comparisons with Smith compensated responses in a system that contains dead-time 
delays.  For the specific parameters of figure 7, the gap voltage amplitude regulation is 
better than 5% of design and gap phase regulation is better than 4 degrees throughout the 
entire cycle for a peak beam current of 75 Amperes per gap.  

When modest delays are added to the feedback path, the system becomes 
unstable, and/or regulates the cavity voltage poorly.  It appears that some form of 
compensation will be required to maintain stability and adequate regulation of the SNS 
system in the presence of delays anticipated for SNS.  If a Smith compensator is not used, 
some other form of compensation will be needed.    
 
 
Smith Compensator Response 
 

Figure 8 shows the system response when a Smith compensator is added to the 
basic feedback system.  In this first case, an analogue of the cavity has been added that is 
identical to the actual cavity.   A delay of 750 ns has been applied to both the actual 
feedback path, and the analogue path to test the effectiveness of the compensator.  This 
much delay, equal to about 80% of the rf period, goes well beyond the threshold for 
instability in an uncompensated network like that which produced the zero-delay 
response depicted in figure 7.  In spite of the presence of this relatively large delay, it is 
clear from figure 8 that stability is maintained when the Smith compensator is added to 
the network. 
 In fact, close observation of figure 8 reveals that the response with 750 ns of delay 
is identical to the response of the uncompensated network that had no delay.  This 
behavior is expected, since a perfectly constructed analogue in a Smith-compensated 
network perfectly eliminates the effect of any delay in the feedback path, placing the 
delay element outside the feedback loop. 
 Figure 9 is a plot of the response of the Smith-compensated network when the 
analogue elements of the Smith compensator are not precise replicas of the actual cavity 
and signal delay.  In this case, the dynamic tuning parameter, the base-inductance of the 
cavity, and the cavity Q are misadjusted by about 5%.  The analogue delay for the Smith 
compensator has been set to an error level that corresponds to about 5 degrees of rf phase.  



 

 

It is clear in figure 9 that stability and regulation are maintained in spite of the 
imprecision in the analogue elements of the Smith compensator.   

Numerous variations in the analogue errors have been explored in other test cases 
that show similar results.  While a more systematic statistical analysis of the effect of 
compensator errors is needed, it is clear from basic simulation results to date that the 
Smith compensator is extremely effective in compensating dead-time delay in the SNS 
feedback system. 
 
 
Conclusions 
 
The simulations presented in this report demonstrate that a Smith compensator can 
stabilize the SNS ring-rf feedback-control system in spite of long delays in signal 
transmission around the feedback loop.  The simulations also demonstrate that an 
effective Smith compensator can be implemented using only a modest level of care in the 
construction of the necessary compensator elements.   

While the simulations have been carried out using high-frequency compensator 
elements, similar results should be obtained using equivalent low-frequency baseband 
elements (Ref.2).  These baseband elements can be readily implemented using reasonably 
simple algorithms in a digital signal processor.  Since the control system being provided 
by BNL is already digitally based and highly flexible, addition of a Smith compensator 
with baseband analogue elements appears practical. 
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